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ABSTRACT: Analysis of a methanolic extract of marc from Boronia megastigma (Nees) using LC-MS (APCI, nominal mass)
provided strong evidence for the presence of both glycosides and malonyl glycosides of methyl cucurbates, C13 norisoprenoids
including megastigmanes, and monoterpene alcohols. Subsequent fractionation of an extract from the marc using XAD-2 and LH 20
chromatography followed by LC-UV/MS-SPE-NMR and accurate mass LC-MS resulted in the isolation and identification of
(1R/4R,SR)-3,3,5-trimethyl-4-[ (1LE)-3-oxobut-1-en-1-yl]cyclohexyl [3-p-glucopyranoside (3-hydroxy-S,6-dihydro-3-ionone-f3--
glucopyranoside); 3,7-dimethylocta-1,5-diene-3,7-diol-3-O-f3-p-glucopyranoside; and a methyl {(1R)-3-(3-p-glucopyranosyloxy)-
2-[(2Z)-pent-2-en-1-yl|cyclopentyl}acetate stereoisomer (a methyl cucurbate-3-p-glucopyranoside); and provided evidence for
3,7-dimethylocta-1,5-diene-3,7-diol-3-O-(6'-O-malonyl)-f3-p-glucopyranoside in boronia flowers.
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B INTRODUCTION

Boronia megastigma (Nees) (brown boronia, family Rutaceae)
is a woody understorey shrub that is endemic to the southwest of
Western Australia. The plant produces a highly fragrant flower,
and clones of B. megastigma (Nees) are grown commercially in
Tasmania. A complex range of volatile compounds have been
identified in boronia' * including methyl jasmonates, dodecyl
acetate and other organoleptically interesting esters, monoter-
penols, sesquiterpenes, [-ionone, and a range of other C13
norisoprenoids.

Historically, an extract has been obtained from boronia
flowers using a solvent extraction process. In Tasmania, im-
proved large scale extraction technologies developed in the 1980s
has established boronia as an intensive horticultural crop. Re-
search and 4publications that followed from doctoral studies by
MacTavish” represented important advances in the field of
boronia production. A series of studies optimized the solvent
extraction process® and harvest time technologies.’ Further
work”® established that post harvest incubation led to increases
in volatiles and a commercial post harvest incubation process
which resulted in increased yields of B-ionone.”

The role of metabolic processes in the appearance of C13
norisoprenoids, including -ionone, was investigated by Cooper
et al.'”'" The authors identified a group of five C27 apocar-
otenoids in boronia flowers and presented evidence that the
appearance of 3-ionone was correlated with increases in carote-
noids during flower development. This has led to speculation
that biosynthesis of hydroxylated C13 norisoprenoids from
xanthophylls may occur in boronia. The possibility that those
compounds may be present as glycosidic precursors was also
considered.

v ACS Publications ©2011 american chemical Society

Glycosides of flavor and aroma compounds including gluco-
sides and 6'-O-malonyl glucosides of C13 norisoprenoids, mono-
terpenes, and shikimates are ubiquitous in the plant kingdom,
and methods for their isolation and detection are widely
documented."””"® High pressure liquid chromatography—mass
spectrometry (LC-MS) techniques using electrospray ionization
(BSI) combined with the use of reference standards were
previously used by Withopf et al.'” and Boss et al.' to screen
for glycosides in several different types of fruits and leaves.
Tandem MS/MS using a triple stage quadrupole analyzer with
atmospheric pressure chemical ionization (APCI) has also been
reported.'?

The work presented here was conducted, using hyphenated
HPLC, MS, and NMR techniques, in order to investigate the
presence of glycosylated flavor and aroma compounds in Boronia
megastigma.

B MATERIALS AND METHODS

Materials. Boronia marc was obtained from flowers grown in
southern Tasmania. Chemicals and solvents were either of analytical
or of HPLC grade as required. Deuterated acetonitrile (CD3CN, D
99.96%) was sourced from Cambridge Isotope Laboratories. The XAD-2
was obtained from Supelco, and the Sephadex LH 20 resin was
purchased from Sigma-Aldrich.

Extraction of Glycosides. Boronia marc (typically 100 g), which
had been extensively extracted with petroleum ether to remove the
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nonpolar compounds, was homogenized with ice-cold methanol
(MeOH, 250 mL) in a compressed-air blender for two minutes. The
ensuing homogenate was blended (in batches) for a further 1 min
(Sorvall Omni-mixer, highest speed setting), shaken for 20 min at 200
cycles/s (Janke and Kunkel Ika-Werk, KS 500, rotary shaker), and
filtered through a Blichner funnel (Whatman no. 1). The solids were
washed with small volumes of MeOH. The resultant primary MeOH
extract was dried by rotary evaporation, shaken with S0 mL of distilled
water to form a slurry, and again filtered (Whatman No. 2, 2 layers). The
remaining solids were washed with 2 X 50 mL aliquots of distilled water
to yield 160 mL of a purple filtrate, which was stored at 4 °C prior to
chromatography on XAD-2.

XAD-2 Chromatography. A glycosidic extract was prepared
from the purple filtrate using XAD-2 chromatography based on the
method of Giinata et al.* The aqueous extract (typically 320 mL) was
poured onto an equilibrated XAD-2 column measuring 40 X 4.5 cm.
The column was washed with 4 L of distilled water to remove sugars.
The glycosidic fraction was eluted with 4 L of MeOH, and the solvent
was reduced by rotary evaporation to yield typically 3.3—3.8 g of a purple
solid. The glycosidic MeOH extract was stored at —10 °C prior to
further analysis.

LH 20 Chromatography. This glycosidic MeOH extract was
further separated on Sephadex LH 20. Two different LH 20 columns
were used (column 1 =19 X 5.0 cm; column 2 = 80 cm X3.0 cm).
During use, the column was connected to an AKTA prime (Amersham
Biosciences) pumping and fraction collection system. Samples, usually
1.0 g, were loaded onto the column using an injection loop. The columns
were eluted with water, and the fractions (column 1 = 20 mL, n &~ 10—
32; column 2 = 10 mL, n ~ 20—65) were analyzed using LC-MS (LCQ),
then pooled to maximize particular glycosidic precursors prior to NMR
spectroscopy. Three samples were obtained. Sample 1 was the pooled
fractions 13—14 from two column 1 runs. The pooled fraction 22-32
from these two runs was then subjected to further chromatography
through column 2 to give sample 2 (pooled fractions 46-47) and sample
3 (pooled fractions 55-57). The columns were washed with ethanol
between runs and re-equilibrated with water prior to use. Solvent
changes were achieved with a gradient to minimize any disruption to
the resin.

LC—MS Analysis. Aqueous LH 20 fractions containing the glyco-
sides were initially analyzed using a Waters 2690 HPLC with a Waters
Novapak RP18 3.9 mm X 150 mm column and a Finnigan LCQ
detector. Separation was achieved with MeOH (solvent A) and 0.1 M
ammonium acetate (solvent B) using LC gradient 1: flow rate mL/min,
30% A/ 70% B to 90% A/10% B over 25 min.

Initial LC-MS analyses were conducted with the HPLC column
coupled to a Finnigan LCQ ion trap MS. Typical MS conditions were
APCI source; vaporizer, 470 °C; capillary, 175 °C; sheath gas flow, 60
psi; capillary voltage, 46 V, range m/z 150—750. Data dependent and
targeted MS” and MS® experiments were also conducted for many
samples. When single ions were targeted or selected in data dependent
experiments, an isolation window of at least 3 m/z units was used.
In some experiments, related ions 2 m/z units apart were targeted
with an isolation window of 6 m/z units around the average of the two
values.

Accurate mass analyses were conducted with a Finnigan Surveyor
HPLC and a Thermo Orbitrap MS using LC gradient 1. Full scan data
was collected in profile mode with 2 ppm mass accuracy. In addition,
data dependent MS” product ion scans were acquired (resolution =
60,000) followed by 4 data dependent ion trap scans.

LC-MS Coupled with Solid Phase Extraction and Off-Line
Nuclear Magnetic Resonance (LC-UV/MS-SPE-NMR) Anal-
ysis. The glycosidic samples 1—3 were analyzed by LC-UV/MS-
SPE-NMR. For instrument details refer to Motti et al.”* and Supporting
Information. Separation was achieved with a RP18 Gemini 3 um, 110 A,

50 X 4.6 mm (Phenomenex) HPLC column using one of the following
LC gradients:

LC gradient 2, flow rate 0.5 mL/min, 85% A/15% B to 40% A/60% B

over 60 min;

LC gradient 3, flow rate 1 mL/min, 75% A/25% B to 50% A/50% B

over 60 min; and

LC gradient 4, flow rate 0.5 mL/min, gradient 65% A/35% B to 40%

A/60% B over 35 min.

Detection of compounds was achieved by APCI MS in negative
mode. The intensity of the UV response at A 254 nm was used to define
the thresholds to trigger SPE trapping. The loaded SPE cartridges were
dried with N, and the analytes eluted with CD;CN directly into a 60 4L
active volume 3 mm flow cell and one- and two-dimensional (1D and
2D) NMR spectra acquired referenced to 1.96 ppm ("H) and 118.4 ppm
("*C). "H NMR spectra were recorded using a multiple presaturation 1D
nuclear Overhauser effect spectroscopy (NOESY) pulse sequence.
"H—"H correlation spectroscopy (COSY) and heteronuclear single
quantum correlation (HSQC) spectra were acquired in phase sensitive
mode; heteronuclear multiple bond correlation (HMBC) spectra
(optimized for JCH, 7.5 Hz) were acquired with gradient selection.
Selective gradient 1D COSY and total correlation spectroscopy
(TOCSY) spectra were also acquired.

B RESULTS AND DISCUSSION

Preliminary LC-MS Screening for Glycosides. Initially, pri-
mary MeOH extracts of boronia were analyzed by full scan APCI
MS with alternating data dependent MS” spectra on the most
intense ion. It had been anticipated that the full scan data would
show evidence of glycoside [M + H]" ions and that the MS?
spectra of these ions would include the corresponding [aglycone
+ H]" ions. While [M + H] " ions were not selected by the data
dependent MS” experiments, inspection of the mass spectra
revealed the presence of several m/z 371 and m/z 373 ions
(putative [M + H] ™ ions) for C13 norisoprenoid glycosides,
together with the expected aglycone ions ([aglycone + H] ") at
m/z 209 and 211 arising from in-source fragmentation, consis-
tent with C13 norisoprenoids. These ions potentially corre-
sponded to a number of CI13 norisoprenoids previously
identified in boronia including 3-hydroxy-5,6-dihydro-f3-ionone
and 3-0xo-5,6-dihydro-f3-ionol (all MW = 210); and 4-hydroxy-
p-ionone, 3-hydroxy-f3-ionone, and 4-oxo-f3-ionol (all MW =
208).%3

The absence of [aglycone + H] " ions in data dependent mode
was explained through interference of automatically selected ions
from the more intense rutin and related flavanone peaks which
eluted nearby. Two strategies were employed to overcome the
problem of interference by the flavonoids. These were (1)
changes to the separation procedure in order to reduce the
amount of rutin in the extract and (2) tandem MS experiments
on selected protonated molecules in the glycosidic MeOH
extract.

Tandem MS Experiments. The tandem MS screening ex-
periments were assisted by the serendipitous observation that
LC-MS of the glycosidic MeOH extract using a column pre-
viously eluted with MeOH and an aqueous ammonium acetate
buffer resulted in the formation of strong ammonium adducts in
APCL Product ions at m/z 209 and 211 were obtained from MS?>
of the protonated molecules at m/z 457 and 459, and from MS3
of the ammonium adducts at m/z 474 and 476. Product ions of
m/z 209 were also observed to be derived from MS® on m/z 492
and from MS? on m/z 47S. Examination of these mass
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Figure 1. Typical MS> spectrum observed for a putative malonyl glycoside of a C13 norisoprenoid from the [M + NH4] " ion at m/z 474.

differences allowed speculation that malonyl glycosides of C13
norisoprenoids (MW 456 and 458) or methyl cucurbates (MW =
474) were contributing to these outcomes. The methyl cucur-
bates (MW = 226) were considered here through reasoning that
the [aglycone + H — H,O0]" ion for the methyl cucurbates was
equivalent in mass to the [aglycone + H]" ion of CI3
norisoprenoids. The presence of the [aglycone + H]" ion at
m/z 227 was also observed for the putative malonyl glycosides of
methyl cucurbates. Figure 1 shows the MS” mass spectrum
generated from the ammonium adduct of a putative malonyl
glycoside of a C13 norisoprenoid.

Consequently LC-MS experiments using 0.1 M ammonium
acetate as the polar mobile phase (LC gradient 1) with specific
targeting of the parent ions were designed to screen explicitly for
malonyl glycosides of C13 norisoprenoids and methyl cucur-
bates. A similar approach was then used to screen for glycosides
of monoterpenes. Results clearly demonstrated that the 2putative
aglycone product ions could be obtained through MS” experi-
ments from ions with m/z values equivalent to M + H]Jr or
similarly by MS> experiments of the ammonium adduct ([M +
NH,]") for a range of compounds with masses equivalent to
C13 norisoprenoids, monoterpenols, and methyl cucurbates.
The formation of ammonium adducts was also observed by
Withopf et al."” when screening for malonylated glycoconjugates
in plants using ESI MS.

A more comprehensive analysis of the possible glycosides in
the glycosidic MeOH extract was performed using a Thermo
Orbitrap MS. In most cases, the molecular formulas of the parent
molecules and aglycones were found to be consistent with the
proposed glycosides. The range of putative glycosides in boronia
was found to be extensive, and Table 1 lists the calculated and
measured masses for each diagnostic ion, including sponta-
neously generated daughter ions. The generation of accurate
mass data has been previously used as support for the identifica-
tion of glycoside content in biological samples. This includes
anthocyanins in raspberries,”” a flavanoid glucoside in artichoke

leaf,”® and monoterpene glycosides in the roots of Paeonia
lactiflora.**

NMR Identification. Three boronia samples, fractionated
using XAD-2 and LH 20 chromatography, were investigated by
LC-UV/MS-SPE-NMR and glycosides corresponding to the
putative identifications made through nominal and accurate mass
LC/MS were identified. A summary of the NMR assignments in
CD;CN is presented in Table 2, and the structures for each of the
identified compounds are presented in Figure 2.

3,7-Dimethylocta-1,5-diene-3,7-diol-3-O-[3-p-glucopyrano-
side (2). The 1D and 2D NMR data for the compound with
molecular formula C,¢H,30, isolated from sample 1 (LC
gradient 2, RT = 31—33 min) were in good agreement with
those expected for 2 (Figure 2).*> Three olefinic protons
consistent with an isolated double bond were observed at Oy
S.11(1H,d, 17.5; H-1a), 5.16 (1H, d, 11.0; H-1b), and 5.99 (1H,
dd, 17.5, 11.0; H-2). A second disubstituted double bond, dy
5.61 (1H, dt, 15.8, 7.2; H-5) and 5.44 (1H, d, 15.8; H-6), was
assigned E geometry based on the large coupling constant
measured. Three methyl groups were observed as two coinci-
dental singlets at Og; 1.18 (2 X 3H, s; H-8/9) and a methyl singlet
at Oy 125 (3H, s; H-10). COSY and TOCSY correlations
confirmed the aglycone moiety to be 3,7-dimethylocta-1,5-
diene-3,7-diol (1), also referred to in the literature as 7-hydroxy
hotrienol.?

Selective COSY experiments established correlations from an
anomeric proton at Oy 4.35 (1H, d, 7.8; H-1) through to the
shielded methylene protons H-6a’/6b’ (Oy 3.53 and 3.68)
adjacent to a hydroxyl functionality. Vicinal "H—"H coupling
constants Jy/ 5 = 7.8, ] 3 = 8.6, and Jy 4 = 9.4 confirmed the
glycone moiety was f3-glucopyranose (X, Figure 2).** HMBC
correlations observed from H10 into C1’ and from H1’ into C3
(weak) indicated the two moieties were joined via the C-1'-O-C-
3 ether linkage and confirmed the presence of 3,7-dimethylocta-
1,5-diene-3,7-diol-3-O-f3-p-glucopyranoside (2), previously iso-
lated from Portulaca oleracea,” in boronia.
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Table 2. Continued

compound 7

compound §

compound 3

compound 2

selective

selective

HMBC*

COSY

O (J, m) “*
3/

3.19 (m)

oc"
77.3

HMBC* No.

TOCSY

COSY TOCSY o Ou(,m)*  COSY
321 (m) 3,5 6a, 6b,

Og (J, m) “*
3.19 (m)

COSY HMBC*

On (J, m)*
3.19 (9.4, brt) 3,4

oc*
72.1

no.

Y

cr

76.9

Y

c3

3,21
6a, 6b,

6a

3.19 (m)

72.0

4, 6a

3.23 (m)

71.5

s/

6b'

4,60 s 332(m)

3.14 (m)

77.1

32,1
6b, 4/5,

c4

6b’

632 3.55 (107,

6a’

c4

S, 6b

3.59 (119,

63.0

6a'

4.16 (11.7,d) 6b

6a’

s, 6b'

3.53 (12.0,

63.2

/

7.7 dd)
371 (107,

32,1
62, 4/5,

62, dd)
374 (119,

4.9, dd)
3.68 (12.0,

c4

63

6b’

a

5,6

6b’

s/, 6a 3,5, 6b

427 (117,

6b’

s, 6a

6b’

7.7 dd)

3,21

6.2, dd)

4.8, dd)

2.3,dd)

L

3.60 (s)

8

9/
multiplicity. “HMBC correlations from H to C.

J = coupling constant in Hz, m

b

a

OH Q
8 () 12 11 0O e o~
10 :
1 2 S 3]
X s W
. %
4 RO ‘
10 13
4 %R
OR
1R=H 4R=H 6R=H
2R=X 5R=X TR=X
3R=Y

Figure 2. Structures of aglycones and the glycosides found in Boronia
megastigma (Nees) confirmed by NMR spectroscopy. Twenty-six other
related partially characterized glycosides are also listed in Table I.
1 = 3,7-dimethylocta-1,5-diene-3,7-diol; 2 = 3,7-dimethylocta-1,5-diene-
3,7-diol-3-O-3-p-glucopyranoside; 3 = 3,7-dimethylocta-1,5-diene-3,
7-diol-3-0-(6'-O-malonyl)-f3-p-glucopyranoside; 4 = (1R4R,SR)-3,3,
S-trimethyl-4-[ (1E)-3-oxobut-1-en-1-yl]cyclohexanol  (3-hydroxy-S,
6-dihydro-f3-ionone); S = (1R4R,SR)-3,3,5-trimethyl-4-[ (1E)-3-oxobut-1-
en-1-yl]cyclohexyl-3-p-glucopyranoside  (3-hydroxy-S,6-dihydro-£3-
ionone-f3-p-glucopyranoside); 6 = methyl {(1R)-3-hydroxy-2-[(2Z)-
pent-2-en-1-yl]cyclopentyl}acetate (stereoisomers present in boronia
include (25,3S) (methyl cucurbate), (25,3R) (methyl 3-epicucurbate),
and (2R,3R) (methyl 2,3-diepicucurbate); 7 = a methyl {(1R)-3-(-p-
glucopyranosyloxy)-2-[ (2Z)-pent-2-en-1-yl]cyclopentyl }acetate stereo-
isomer (a methyl cucurbate [3-D-glucopyranoside stereoisomer); X =
p-p-glucoside; and Y = (6'-O-malonyl)-f3-p-glucoside.

3,7-Dimethylocta-1,5-diene-3,7-diol-3-O-(6'-O-malonyl)-[3-
p-glucopyranoside (3). Spectral data for the second compound
isolated from sample 1 at RT = 20 min were similar to those
obtained for 2, with one isolated double bond (dy 5.13 [1H, d,
10.8; H-1a], 5.17 [1H, d, 18.0; H-1b], and 5.95 [ 1H, dd, 18.0, 10.8;
H-2]) and one E-disubstituted double bond (dy 5.60, 2 x 1H, br
t, 15.2; H-5/6). A methyl singlet at Og; 1.21 (3H, s; H-10) and two
coincidental singlets at Og; 1.19 (2 X 3H, s; H-8/9) were also
observed. This established 3,7-dimethylocta-1,5-diene-3,7-diol as
the aglycone moiety (Figure 2).

The "H, COSY and TOCSY spectra confirmed correlations
for a spin system from an anomeric proton at Og; 4.30 (1H, d, 7.8;
H-1') with a f-glycosidic linkage, to methylene protons at Oy
4.16 (1H, d, 11.7; H-6a') and 4.27 (1H, dd, 11.7, 4.8; H-6b'),
similar to the glycone moiety in 2. The presence of an additional
signal at Oy 3.60, the deshielded methylene protons at 0y 4.16
and 4.27, similar to that found for a malonyl glycoside by Withopf
et al,"? and the molecular formula C,oH;,01q, provided evi-
dence of a malonyl side chain on the glycone moiety (Y,
Figure 2). The low amount of the glycoside isolated was not
sufficient to fully elucidate its stereochemistry. The data sug-
gested the presence of 3,7-dimethylocta-1,5-diene-3,7-diol-3-
O-(6'-O-malonyl)-(-p-glycopyranoside (3) in boronia. This
compound has not been previously reported in the literature as
a natural product.

(TR4R,5R)-3,3,5-Trimethyl-4-[ (1E)-3-oxobut-1-en-1-yl]cyclohexy!
B-p-glucopyranoside (3-hydroxy-5,6-dihydro-f3-ionone-[3-
p-glucopyranoside) (5). Sample 2, separated using LC gradient
3, yielded a C13 norisoprenoid glycoside with formula C;9H3,0-

2615 dx.doi.org/10.1021/jf104051t |J. Agric. Food Chem. 2011, 59, 2610-2617



Journal of Agricultural and Food Chemistry

at RT =21.8 min. Two olefinic protons observed at dy; 6.01 (1H,
d, 16.2; H-8) and 6.66 (1H, dd, 10.3, 16.2; H-7) were consistent
with an E-disubstituted double bond. COSY correlations were
observed from H-7 to H-8 and to a methine proton at O3y 1.64
(1H, dd, 10.3, 11.0; H-6). Three methyl groups were observed as
two methyl singlets (g 1.0S, 3H, s; H-11 and 0.82, 3H, s; H12),
and a methyl doublet (Oy; 0.79, 3H, d, 6.4; H-13) with a COSY
correlation to a methine at Oy 1.98 (1H, m; H-5). Selective
TOCSY experiments established the spin system based on
correlations from H-8 through to H-2a/2b and to H-13
(Table 2) and established the presence of the aglycone moiety
3-hydroxy-S,6-dihydro-f3-ionone (4, Figure 2).

Selective TOCSY experiments identified a spin system from
an anomeric proton at Oy 4.27 (1H, d, 8.2; H-1") through to
methylene protons at Oy 3.59 (1H, dd, 11.9, 6.2; H-62") and Oy 3.74
(1H, dd, 11.9, 6.2; H-6b) indicative of a glycone with a 3-glycosidic
linkage. The aglycone methine carbon at 0 74.2 (C-3) showed a
HMBC correlation to the glycone proton H-1', revealing the two
subunits were linked via the ether linkage C-1'-O-C-3. These data
were in good agreement with 3-hydroxy-5,6-dihydro-f-ionone- 3-D-
glucopyranoside (5), for which the 1R 4S,5R stereoisomer (Alangio-
noside L) has previously been isolated from Alangium premnifo-
lium®’. The main aglycone stereoisomer in boronia is IR4R,SR (2).

Methyl {(1R)-3-(B-p-glucopyranosyloxy)-2-[(22)-pent-2-en-
T-yllcyclopentyl} Acetate Stereoisomer (a Methyl Cucurbate f3-
o-Glucopyranoside Stereoisomer) (7). A compound (RT =
26—28 min) corresponding to formula C,9H3,0g was isolated
from sample 3 using LC gradient 4. The aglycone moiety was
identified as a methyl cucurbate (6, Figure 2). Two olefinic
protons were observed with a smaller coupling constant of | =
10.5Hz (0 5.34, 1H, dd, 10.5,7.5; H-3'",and 5.41, 1H, dd, 10.5,
8.1; H-2""") characteristic of a Z-disubstituted double bond. Two
methyl groups were identified as a methoxy at O 3.58 (3H, s;
H-3"") and a triplet at 015 0.94 (3H, t, 7.5; H-5"""). The COSY data
established two spin systems based on correlations from the
methyl triplet H-5"" through to H-1""/; and from H-2 through to
H-5 (Table 2), which were shown to be joined by HMBC
correlations from the methylene protons at H-1"’ to C-2 and
C-3. HMBC correlations were also observed from the carbonyl
C-2" to the methoxy singlet H-3", and to the methylene protons
C-1"a/1"”b. The methine carbon at dc 80.2 (C-3) showed a
HMBC correlation to H-1"", the C-1""" correlated to H-2, and
C-2 correlated to H-1"" linking the two side chains to the ring as
shown in Figure 2.

The glycone (X, Figure 2) was established on the basis of a spin
system from an anomeric proton dy 4.22 (1H, br d, 8.0; H-1')
through to dg; 3.55 (1H, dd, 10.7, 7.7; H-62'), and 3.71 (1H, dd,
10.7, 7.7; H-6b'). The large coupling constant of the anomeric
proton, ] = 8.0 Hz, was indicative of a 3-glycosidic linkage, while
the '"H—'H coupling constants J;/» = 8.0, Jyy 3y = 10.1,and J3 o =
7.2 provided evidence that the glycone moiety was [3-glucopyr-
anose. Furthermore, HMBC correlations between C-3 of the
aglycone and H-1'of the glycone confirmed the two subunits were
linked via the ether linkage C-1’-O-C-3 and confirmed the
presence of a methyl cucurbate-3-p-glucopyranoside (7)* in
boronia.

Overall, the evidence obtained from LC-MS analyses of the
glycosidic MeOH extract of boronia marc supported the pre-
sence of both glycosides and malonyl glycosides of three methyl
cucurbates, several C13 norisoprenoids including megastig-
manes, and several monoterpene alcohols. Subsequent fractiona-
tion of the glycosidic MeOH extract using XAD-2 and LH 20

chromatography followed by accurate mass LC-MS and LC-UV/
MS-SPE-NMR analysis allowed for the formal identification of
three known glycoconjugates, 3,7-dimethylocta-1,5-diene-3,7-
diol-3-O-f3-p-glucopyranoside (2), (1R4R,SR)-3,3,5-trimethyl-
4-[(1E)-3-oxobut-1-en-1-yl]cyclohexyl ~ f-p-glucopyranoside
(3-hydroxy-S,6-dihydro-f3-ionone-f3-p-glucopyranoside)  (5),
and a methyl {(1R)-3-(f-p-glucopyranosyloxy)-2-[(2Z)-pent-
2-en-1-yl]cyclopentyl }acetate stereoisomer (methyl cucurbate
p-p-glucopyranoside stereoisomer) (7), as well as the previously
unreported 3,7-dimethylocta-1,5-diene-3,7-diol-3-O-(6'-O-mal-
onyl)-f-p-glycopyranoside (3) .
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dem mass spectrometry; m1/z, mass to charge ratio; NMR, nucle-
ar magnetic resonance; SPE, solid phase extraction; CD;CN,
deuterated acetonitrile; Oy, proton chemical shift; 3¢, carbon
chemical shift; J, coupling constant;m, multiplicity; COSY,
"H—"H Correlation spectroscopy experiment; HSQC, hetero-
nuclear single quantum correlation experiment; HMBC, hetero-
nuclear multiple bond correlation experiment; TOCSY, total
correlation spectroscopy experiment; NOESY, multiple presa-
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